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ABSTRACT

A method for accurate numerical integration is proposed and

illustrated by a variety of examples. The method depends on an

ability to efficiently evaluate the weights and abscissas of

Gaussian quadrature formulas, and software to achieve this pur-

pose is also presented.
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I. INTRODUCTION

A considerable number of problems of physical and engineer-

ing interest require as part of their solution the accurate

evaluation of definite integrals of the form

f f(x)dx, [*]

where R is a closed region of one or more dimensions. Typical

cases have R = a compact or infinite interval in one dimension,

and R = a rectangular or spherical solid in higher dimensions.

In applications, the integral [*] may yield percentage points

of a probability distdbution, the autocorrelation of a signal,

a one or two dimensional convolution of a signal with a filter

response function, the intensity of graybody radiation emitted

into a particular waveband (Planck integral), certain thermo-

dynamic lattice sums, etc.

Usually it is desired that the computed value of [*] be

accurate to so many digits (prescribed relative error) or to

so many decimal digits (prescribed absolute error). The only

way that a user can be certain that this requirement is satisfied

is to have available an error formula for the integration rule

being employed, and to verify that the integrand and the order

of the rule are such that the error term is sufficiently small.

(In making this last statement we are assuming negligible round-

. ... ' " "6" 9 4llr -1



off error.) Now typically the classical error term ( for inte-

gration over intervals) involves a small coefficient multiplied

by a high order derivative evaluated at an unknown point in the

interval of integration. Hence in practice the maximum modulus

of this derivative must be computed or at least bounded. And

in practice this task is usually impossible, due to the complexity

of the intergrand.

One way out of this difficulty (for the case where R is a

compact interval) is available when the integrand f extends to

an analytic function on some neighborhood of R. Complex variable

methods (related to the Cauchy integral formula) then often per-

mit bounds on the error in terms only of the values of f, and not

of its derivatives. Furthermore, the error term will tend ex-

ponentially to zero, as the order of the integration rule in-

creases. Unfortunately, it is not always the case that our in-

tegrand is analytic.

This note will present a procedure for resolving the problem

of fast accurate quadrature for integrands which are reasonably

smooth but not necessarily analytic. In the absence of smooth-

ness (i.e., if there are discontinuities in the first derivative,

or in one of the first partial derivatives, if the integrand is

a function of several variables), our method will not have favor-

able convergence pronerties, and should not be employed. In the

2



case of integration over a compact interval, one would then be

better advised to utilize a trapezoidal-type rule, such as

(adaptive) Romberg integration [1, § 6.3]. Software for such a

procedure is available in the International Mathematical and

Statistical Library (IMSL) under the title DCADRE.

In brief, our method is based on observation of the con-

vergence of a sequence of Gauss-type quadratures with appropriate

weight function. For this to be practical it is necessary to

have available a fast procedure for generating the abscissas and

coefficients of a Gaussian formula of a given order. Such a

procudure is given below; it is based on suggestions of Wilf

[21 and Golub-Welsch [3] to convert this problem to an eigen-

analysis of a certain (symmetric) matrix.

The original motivation for this work came from the (two-

dimensional) problem of accurately computing the overall output

of an optical detector [4, § 6.2.2.1.11. This output is the con-

volution of the detector response function and the irradiance

function H. In the important special case of a rectangular

detector this convolution reduces to the integration of H over

the (rectangular) detector surface. Our method, described below,

was proposed as an alternative to the use of fast Fourier trans-

form techniques, with their arbitrary sampling decisions and

apparent lack of suitable error theory.

3
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II. REVIEW OF GAUSSIAN QUADRATURE THEORY

This section contains a brief exposition of convergence and

error analysis for Gaussian integration formulas. No attempt

has been made to write a small text on the subject! For further

background the sources [1, 5, 6, 7] may be consulted. In general

the recent monograph [1] is an excellent source of information

about all aspects of the quadrature problem.

2.1 Basic Theory

Let I be an interval of real numbers and let w be a weight

function on I, that is, w(x)>o and fxn w(x)dx is finite for
I

n = 0,1,2,.--. Then there exists a sequence {p n(x): n = 0,1,2,

... } of polynomials of degree n with are orthonormal on I with

respect to w, in the sense that

Pm(X) Pn(x) w(x)dx =mn " (2.1)

for all m,n, = 0,1,2,-o. These pn are unique up to a sign, and

we shall adjust this sign so that the coefficient k of x n inn

Pn is positive. The pn can be computed either by applying the

Gram-Schmidt procedure to the monomials {xn} or by use of a

recurrence relation

4



P (x) = (anX + b n ) pn(X) - c P 2 (x), (2.2)
n ~n n -n-inn-

where anCn 0, p_1 (x) = 0, P0 (X) = (fJI(x)dx)- . This re-

currence will be very important to us below. Let us now just

note one special relation between the coefficients a and c
n n

that follows from the normality of the pn" Namely, by multiply-

ing both sides of (2.2) by pnw and by p and integrating over

I, we obtain

1 = a n_ l fxp l(x) Pn-2 (x)w(x)dx,

I

0 = an fXPn l(X) Pn_2 (x)w(x)dx - Cn,

whence

Cn = an/an 1  (2.3)

Now consider the n x n tridiagonal symmetric (Jacobi) matrix

-bl/a c2/a2  0 0 0 0

c2/a 2  -b2/a 2  c3/a 3  0 0

A=
0 c 3 /a 3  -b3/a3  c 4 /a 4  0

0 0 c /an  -bn/a n

5
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Using (2.3) the reccurrence relation (2.2) can be rewritten in

the matrix-vector format

AP(x) = xP(x) + an+l Pn (X) , (2.4)a n+1l

T
where P(x) = (p o(X), Pl(X),..., Pn-l(X)) From (2.4) we con-

clude that a real number x0 is a root of Pn exactly when it is

an eigenvalue of A. [2,3].

The reason for our interest in the roots of p n is of course

that they comprise the abscissas of the corresponding Gauss

quadrature rules. The nt h Gauss quadrature formula is a (pos-

itive) linear functional whose value at a continuous function

f is

n

G (f;W) k n )  f(xk(n) (2.5)n k_ k(25k=l

where

0 < Wk(n) k kn+1l( (x k ( n ) ) ! (x k ( n ) )  l<k<n.
kk Pn+l k Pn k -

n

With this choice of weights {wk (n) and abscissas {xk (n) it isWikthi

well known [1] (see also § 3.2 below) that

6



bf(x)w(x)dx = G n(f;W) + f(2n) ) a<<b (2.6)

a (2n) ! kn

provided that a,b are finite and f has 2n continuous derivatives

on [a,b]. A particular import of (2.6) is that the Gauss rule

of order n exactly integrates every polynomial of degree < 2n - 1.

This is the famous optimality property of Gauss rules: they are

exact for polynomials of as large a degree as is possible with

a formula of the type (2.5) (there are only 2n free parameters

in (2.5)).

2.2 Error Analysis

Let En(f) denote the error in uniform approximation on

[a,b] to the continuous function f by polynomials of degree
th

< n. If p is such a polynomial then the error in n order

Gauss quadrature, EG n(f;w), satisfies

b

IEGn(f;W) I f f(x)tw(x)dx - G (f;W)I

a

b

I if (f(x)-p(x))w(x)dxl + IGn(f-p;w)I

a

n

< (f w(x)dx + E Wk (n) max If(x)-p(x) I

a kl a<x<b

7
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= 2f bw(x)dx Ilf-pIl . (2.7)

a

This being true for all Polynomials of degree < 2n-1, we

conclude that

IEGn (f;w) I <2fb w(x)dx- E (f) (2.8)

a

The advantage of (2.8) over (2.6) is first, that there is no

derivative assumption made about f, and second, that upper bounds

for the error can always be obtained by use of (2.7). Of course

the best theoretical estimates of E n(f) depend on derivative in-

formation about f ("Jackson's theorems", [6]).

In the most favorable situation for Gaussian quadrature on

a compact interval [a,b], the integrand f is (the restriction of)

an analytic function on [a,b]. Then it is known ("Bernstein's

theorem", [6]) that the quantities En (f) decrease very rapidly;

precisely,

En (f) < Kqn,

for positive constants K and q, with q < 1. Hence, by virtue

of (2.8) the Gauss quadratures of f converge at essentially a

geometric rate ("r-linear convergence") to the true value of

8



b

bf(x)(x)dx. (There is in fact an extensive literature on error

a
estimates for Gauss quadratures of analytic functions, giving

more precise versions of this fact; see [8] for a recent con-

tribution.)

The last two paragraphs strongly suggest that Gaussian

quadrature will be most effective for integrands which exhibit

polynomial behavior, and this is certainly true in a practical

sense, when computation time is an issue. But, in fact, the

estimate (2.8) and the Weierstrass approximation theorem show

that

b

lim G (f;w) f(x)w(x)dx. (2.9)
n

a

holds true whenever f is a continous function on [a,b]. Indeed,

(2.9) is valid whenever fw is Riemann integrable on [a,b] [9].

2.3 Double Integrals

Let us now consider the problem of numerically evaluating a

multiple integral over a rectangular region R = [c,d] x [a,b].

The ensuing discussion applies as well to solid rectangular

regions in 3 or more dimensions, and integrals over other types

of regions can frequently be reduced to integrals over rectangular

ones by means of appropriate transformations of coordinates

[1, § 5.4].

9



A standard approach to evaluation of

b d

f f (x,y)w (x) w (y) dx dy (2.10)
a c

is to apply one-dimensional quadrature formulas to the functions

f(x,-) and f(.,y). The resulting formula is known as a product

rule [1, § 5.6, 10, § 2.3] and in the case that each one-

dimensional formula is Gn (; w), we can obtain the product Gauss

formula

n n
Gn7(2) (f-W)=ii j w in)wj~n) f(x~n), x n))3 (2.11)

n -= j=i 1 1

as an approximation to (2.10). Although the theory of multivariate

polynomial approximation is not as well developed as the single

variable case, there is still a Weierstrass theorem. Hence,

since (2.11) will integrate any polynomial p(x,y) exactly provided

that n is sufficiently large, we may conclude that

lim G (n) (f;w) = f(x,y)w(x)w(y)dxdy, (2.12)
a c

for all continuous functions on R.

What about the validity of (2.12) when the integrand in

(2.10) is merely Riemann integrable? The difficulty here is that

this assumption need not imply that the sections f(x,y)w(x) and

10
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f(x,y)w(y) be integrable on [c,d] and [a,b], respectively. Hence,

in general there will be no reason to expect the product Gauss

rule to converge. But suppose that the integral (2.10) is well

enough behaved to obey the Fubini iterated integrals formula:

Y f (x,y) w (x) w (y) dxdy =ff f(x,y)w(x)dx)(y)dy. (2.13)

a c a c

Denoting the inner integral in (2.13) by f(y), we can compute

G n(f;.) for a sufficiently large n; then we can approximately
n n

compute each value f(xk  ) for k = 1,...,n by Gaussian formulas
k

G (f (n)
m (wxk )) for sufficiently large m. In this way we can

conclude that

n m b d
lim lim W Wij f" (mxin) S) (f

L i 1 7 1n jj
n w m- i=l j=l a c

This convergence result is clearly less satisfactory than (2.12)

although it could be used in practice provided (2.13) could be

verified.

2.4 Infinite Interval

Finally we consider the matter of the validity of the con-

vergence formula (2.9) when b = -. This is not covered by the

earlier analysis on account of the non-compactness of the in-

11A
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terval [a,-). However, it is shown in [5, § 111.1] that for a

class of positive quadrature rules which includes the important

special case of the Gauss-Laguerre formula with weight function

w(x;a) = xae-x (a>-l), convergence is obtained for every function

f such the f(o)w(-;a) is Riemann integrable on [a,-), and f has

at most polynomial growth at -. The proof depends on being able

to "squeeze" f between two polynomials: p1 <f<p2, such that

faTP2(x) - Pl (x))w(x;a)dx is arbitrarily small.

III. THE PROPOSED METHOD

Armed with this theoretical underpinning of convergence

theory we can in practice proceed to evaluate an integral of the

form [*] (Introduction) by simply observing the behavior of a

sequence of approximations Gn(f;w): n=l, 2,... , and terminating

the process when IGn+ 1 (f;w) - Gn (f;w)l < F, for some preassigned

tolerance c. There are several caveats to be mentioned here.

First, this termination criterion cannot conclusively prove that

G (f;w) is adequately close to [*] (cf. the discussion in [1, §n

6.1]). It is always possible to construct ad hoc counterexamples.

Nevertheless, this does not seem to be a difficulty in practice,

although it would be safer to require that the termination

criterion above hold for 2 or 3 successive values of n. Second,

there is the matter of choice of weight function, especially when

one is not obviously present to begin with. Third, there is the

12
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need to be able to efficiently generate the weights and abscissas

necessary to fully specify the value G n(f;w) for various values of

n. Finally, this method should, as already noted, only be applied

in cases where the integrand f is reasonably smooth; otherwise

convergence is likely to be too slow to be useful.

The choice of weight function will be discussed in the

following sections. As to the third point just raised, the key

here is the use of the eigenvalue problem shown in formula (2.4).

By computing the eigenvalues of the Jacobi matrix A we obtain the

abscissas of the corresponding Gauss formula. Further it is

known that

T

l=W(n) T(n) (n)
k k  xk

where P(x) was defined just after (2.4). Hence

k(n)(n) (n)Qkn  k p (xk
k k k (~)

is a normalized eigenvector of A corresponding to the eigenvalue

x(n ). By considering just the first component of P(x (n)) we can

conclude that

=(n) w (x)dx (Q( n )) I2
k k 1'

13



(n)asoitdwtth

In other words, the various weights wk associated with the

Gauss formula Gn (.;&) can be obtained as the constant f/w(x)dx

times the square of the first component of a system of n

orthonormal eigenvectors associated with the matrix A.

FORTRAN codes illustrating this procedure for several weight

functions and numerical illustrations of the whole method will

be given in the ensuing sections, along with further discussion.

It is important to appreciate the ease and accuracy with which

the weights and abscissas can be computed in this manner. Earlier

efforts were much slower. They typically involved the use of

some root finding scheme, such as Newton's method, applied

directly to locate each zero of the relevant polynomial. All the

usual attendant difficulties arose here, such as the need for a

sufficiently accurate starting value. This was particularly a

problem in trying to locate the zeros of the generalized Gauss-

Laguerre polynomials (corresponding to the weight function

w(x;a) = xae- x , a > -1, on [0,-)), as these tend to drift off to

infinity as either a or n increase. See, for example, the dis-

cussion in [11].

14
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IV. GAUSS-CHEBYSHEV QUADRATURE

We first look at the case where the weight function w (x) =

2(l-x2) on [-1, 1]. Thus the resulting quadrature formula (2.5)

will approximate

1
f f(x)dx (3.1)

-i l_x 2

The orthonormal polynonials associated with this w are the well-

known Chebyshev polynomials:

Pn (X) = n ( x )  cos(n cs- x), n>l

P0 (x) =

In this case we may clearly write down the roots of p ( = the

abscissas of the corresponding Gauss formula) by inspection:

x(n) = cos( 2-l- ir) , <k<n.

Further, although less obvious, the associated weights w (n) = iT/n,
k

l<k<n, independently of k [6, v.2, ch.5]. It is interesting that

this is the only case where this property of the weights holds

15



true (assuming the interval is fixed as [-1, 1 ]; this is Posse's

theorm [6, v.2, Ch.6]).

Combining all this information the general formula (2.6) here

appears as

f(x)dx n 2k-1 27T f (2n)
f xd = .f(cos(--n T)) + n , (3.2)

1 nk=1 4n (2n)!

for some IJE < 1, provided f C2n [-l, 1]. This formula is re-

markable because the weights and abscissas appear in closed form;

the eigenanalysis of the preceding section is not needed here for

their computation.

4.1 Program and Examples

Exhibit 1 gives a short FORTRAN program which enables a user to

calculate an nth order Gauss-Chebyshev approximation to any in-

tegral of the form

J bg(y)dy; (3.3)

a

the programs accepts a, b, and n as inputs and calculates the

corresponding quadrature (after an appropriate change of variable).

Because in general the integral (3.3) does not contain the weight

function w as a factor, it is introduced artifically in the FUNC-

16



C PROGRAMI TO DO ONE DIMl. GAUSS-CI4EBYSHEU QUADRATURE
C

COMMqON A,9
URITE(6 11)

I FORMAT IX, 'ONE DIMI. GAUSS-CHED%'SHEV QUADRATURE',/',
%1X,'IhPUT LOWER AND UPPER END POINTS')
READ(S,S) A B3

as URITE(6,2)
2 FORrIAT(1X,'INPUT ORDER OF G-C143. FORMULA')

READ(S.2) h
CALL TIMES(DI,TIZV.IT)
P12 - ASIN(I.)
OhF - 0.
DO S K-1,N
)CKN - COS(2tK-1)*Pr2/M)
OHF - ONF + F(XKN)

5 CONTINUE
QHF - GHF*(8-A)*PI2'IN
CALL TIMES(D2,T2,1V2,1T2)
ETIMI - FLOAT(I(2-l(.f*.000013
LJRITE(6,10) N, QNF

te FORMAT(/''GCH0. 0UAD(F;',13,-', - ,FIE-6)
URITE(6,1a.) ETIM

12 FORMAT(/14, 'EXECUTION TIME -',F7.3)
1RITE 6,20)

20 FORMAT(/IX,'RESTART? INPUT O(NO) OR I(YESIP)
READ(S,*) NP
IF (NP -EQ. 0' STOP
GO TO 25
END

FUNCTION F(Xj
COMM!ON A.3
Y * St(A+8+(B-A)3rX)

C ENTER INTEGRAND NEXT AS FON. OF Y
G *2/2+IrO*CS-.~)

F G$* r.X*2
RETURN
EN4D

R; T-0.02/06.19 14:43:34

Exhibit 1

=%9 pAGI LS B"'T qUAL1) L I I .
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TION subprogram. This feature may cause the sequence of Gauss-

Chebyshev quadratures to converge more slowly than the correspond-

ing sequence of Gauss-Legendre quadratures discussed in the next

section (where the weight function = 1), but the simplicity of

formula (3.2) still is a cogent argument for its use.

Table 1 gives some sample output for an assortment of defin-

ite integrals. Since the computation was carried out in single

precision IBM 370 arithmetic, only 5 significant figures are

given. Observe that in all cases except the last convergence

(to 5 figures) is achieved by an order 200 formula. The time

column gives the execution times required to compute the last

entry in each row. These times are a bit higher than necessary

in most cases because of the large increases in N. That is, if

we increased N more slowly, say by increments of 5 or 10, we

would generally achieve convergence to 5 places sooner than shown

in Table 1, with a correspondingly reduced execution time.

18
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4.2 Unilateral Error Bounds

A final remark about Gauss-Chebyshev quadrature pertains to

the possibility of a one-sided error bound, in the sense that for

some integrands f it may happen that either

G n(f; Chb.) < f 1 f-(x)dx ' (3.3)

or

n(f; Chbl) f(x)dx

for all n. For example, inequality (3.4) is valid for the first

three integrals in Table 1, and also holds for the fourth integral,

provided that n>4.

These inequalities would obviously follow from the stronger

results of monotone convergence

G n(f; Chb.) < G n+(f; Chb.) (3.3m)

or

G (f; Chb.) > G (f; Chb.), (3.4m)
n -n+l

for all n (or, for all sufficiently large n). In this section we

20



give some conditions of f sufficient to ensure one of the pre-

ceding inequalities (3.3) or (3.4).

In general, let

i1 f (x) dx
EG n (f; Chb.) =  - G (f; Chb.)

- l-x 2  n

be the error in the Gauss-Chebyshev rule. One expression for
EG (f; Chb.) was given in (3.2), as a special case of (2.6). For

n

the general case of Gauss-Jacobi quadrature (where the weight

function w(x) = (l-x) (l+x) , -l<c,WIxl<l), we can deduce (2.6)

and hence (3.2) from the Peano kernel theorem [1, p. 18] which

permits us to write,

EG (fl; w K (n) fC2n) (t)dt (3.5)
nf

2n (n)for every fe C [-l , i]. Here K is a certain "kernel" which

depends on the weight fucntion w and the order n. It is known

that K(n) is of class C2n-2 on [-1, 1], is positive for It <l, and

in the a=6 (ultraspherical) case, K(n) is an even function [12,

Ch. 4].

Now consider the special integrand f(x) = x, p-0, 1, 2,-.-.

Applyinqj (3.5) we have

EG (xP; w) = p(p-l)'''(p-2n+l) K n)(t)P2ndtn -i

21
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i

2p(p-l) ... (p-2n+l) f K nt p dt > 0, if p is even,
0

0 , if p is odd,

provided that K (n ) is an even function. These equations remain

true if f is replaced by any polynomial with positive coefficients,

or a limit of such polynomials. Hence, for such functions, in-

equality (3.3) is valid (note that this result has been demon-

strated to hold for all Gauss quadrature formulas derived from

ultraspherical polynomials, in particular for the Gauss-Legendre

rule of the next section).

A general class of integrands for which (3.3) is valid is,

for instance, the class of analytic functions f on (-1,1) with

f(P) (0) > 0, p = 1, 2, 3,... (3.6)

And by starting with f(x) = -xp , p = 1, 2, 3,..., and repeating

the above analysis, we can obtain a class of functions for which

inequality (3.4) is valid, namely, the class of analytic functions

f for which (3.6) holds with the opposite inequality sign.

Empirical evidence suggests that in fact the stronger inequalities

(3.3m) and (3.4m) hold for these two classes of integrands res-

pectively.

22



Another condition sufficient to ensure one of the estimates

(3.3) or (3.4) follows immediately from the error formula (3.2).

Namely, if f has derivatives of all orders on (-1, 1) and f(2n)(W

> 0 (resp. < 0) on (-1, 1), then inequality (3.3) (resp. (3.4))

is valid. Indeed this condition may be established for quite

general weight functions, as was originally shown by Shohat; see

[5, p. 92].

23
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V. GAUSS-LEGENDRE QUADRATURE

We next consider integration with respect to the simplest

weight function on [-1, 1], namely w(x) - 1. In this case the

resulting quadrature formula (2.5) will approximate the integral

r1Jlf (x)dx (4.1)

The corresponding orthonormal polynomials associated with this

weight function are the Legendre polynomials. They can be ex-

pressed as

P (x) = VT2T P(X), (4.2)

where

P (x) 1 dn (X2-1) n (4.3)
n (2n)' dxn

this last expression being the Rodrigues formula [6, v.1, Ch. 15].

In order to effectively compute the abscissas and weights of

the corresponding quadrature formula (2.5), we must utilize the

eigenanalysis of part II. This means that we need the recurrence

relation (2.2) from which we can construct the Jacobi matrix A in

(2.4). Now the recurrence for the polynomials Pn in (4.3) is

24



1

nPn(x) = (2n-l) xPnl(X) - (n-l)Pn- 2(x)

[6]. Combining this with the expression for the normalized

polynomials pn in (4.2) yields the desired recurrence relation:

x= 2n-1 fp (x)- (n -2n-iT (x). (4.4)

From (4.4) follows the consistency relation (2.3) and from this

follows

Cn. 1 n-i
a an

n an-i (2n-l) (2n-3)

Since the {b n } of the general recurrence relation (2.2) are zero

here, we have all the entries available to construct the desired

matrix A.

5.1 Program and Examples

Exhibit 2 gives a FORTRAN program which enables a user to

calculate an nth order Gauss-Legendre approximation to an integral

of the form

J bf (x) dx.

a

25
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There are two subroutines: subroutine FORM calculates the weights

(stored in the array WGTS) and the abscissas (stored in DD);

the IMSL subroutine EQRT2S is called by FORM and performs the

required eigenanalysis on the matrix A. The program is written

in double precision because of the added complexity of the eigen-

routine.

Table 2 gives the results of using this program to compute

the same integrals as given in Table 1. The time column gives

the execution time required for the last value reported in each

row.

5.2 Comparison with Gauss-Chebyshev Quadrature

Naturally, Tables 1 and 2 invite comparison. Although the

evidence is limited we draw the following general conclusions:

a) Because of the artifical weight function introduced in

Gauss-Chebyshev formula, its convergence as measured by

the order of the formula (and hence the number of func-

tion evaluations) is much slower than that of the Gauss-

Legendre formula. The latter however requires added

calculation to establish the weights and abscissas.

Thus we need to decide (in advance!) whether this add-

itional calculation is worthwhile. This depends on the

integrand. As the complexity of its evaluation at

various points increases, so does the gain in using

fewer function evaluations, hence the Gauss-Legendre

formula.

27



E- 0 C) CD) U ~ U
U) C) 0 C> Car-

LAo

0 L0

oo OD

-

o c

~co 0 c

m - )LA 0
k0 (nN -o W

co fn m0 L
E-1 ON~ mV ,L4 -

ON LA)

* '0 N a

r-4 0vt0r

m00

u-I '0i NN Nm

z 0 0

u-II '0 N4

C'"M)C N -
(VI 0 0

4J **

-4 -4 28



b) Also if the integrand is analytic on a neighborhood of

the segment [a, b] (as are the second and third in-

tegrands in the Tables), then the rapid convergence of

Gauss-Legendre argues in its favor. These two ex-

amples show time ratios of about 3:1 in favor of Gauss-

Legendre.

c) When the integrand is analytic on (a, b) but not on

[a, b] (as are the first and fourth integrands in the

Tables), the advantage is still with Gauss-Legendre

but somewhat more narrowly.

d) When the integrand is badly behaved with respect to
polynomial approximation (as are the final two in-
tegrands), the Gauss-Chebyshev method becomes much

preferred, because of the ease with which its order

is increased.

The general error formula (2.6) for Gauss-Legendre quadrature

is

f f(x)dx = G (f; Leg.) + 2 "4n, (n!)4 f(2n)(M) (4.5)
n ((2n)! ' 3 (2n+l)

for JEi < 1 and feC 2n[-l, 1], and this too invites comparison with

the corresponding formula (3.2) for Gauss-Chebyshev quadrature.

Let GCR (resp., GLR) be the coefficient of f(2n) () in (3.2)

(resp., in (4.5)), and consider the ratio GCR/GLR. Making use

of Stirling's approximation it is easy to see that
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2n2n
GCR (2n+l)e 2 e
GL---R 4n n2n+l 2 2

asymptotically as n--. This shows that eventually (that is,

for large n) the Gauss-Chebyshev formula has the smaller error

constant, although initially (for n < 10) GCR - 2GLR.

5.3 Evaluation of Double Integrals

The availability of subroutine FORM in the program of Exhibit

2 makes it very easy to implement the product Gauss formula of

(2.11) for the case w(x) = w(y) = 1, and the rectangle a<y<b,

c<x<d. Similarly one could implement a product Gauss-Chebyshev

rule, although we have not done so for this report, partly from

a reluctance to artificially introduce two weight functions, and

partly because of the increased number of function evaluations

involved in high order product integral formulas. But as before,

if too high an order of Gauss-Legendre is required for the desired

accuracy, then the advantage in computation time will pass to

Gauss-Chebyshev.

There are several alternate methods of constructing quadrature

formulas for multiple integrals [10]. Three popular ones are

a) choosing the weights and nodes (= points at which the integrand

is evaluated) so as to make the resulting formula exactly integrate

polynomials of a certain degree or less; b) minimizing the max-
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imum error over a certain class of possible integrands; and c)

statistical (Monte Carlo) sampling.

We looked at several methods of type a), as their theory

is the simplest (of the three general methods), and closest in

spirit to Gaussian quadrature with its greatest success for in-

tegrands having good polynomial approximation properties. Pro-

cedures for constructing quadrature rules of the form

f 
N

f(u)du W i f(Pi )  (4.6)
R i=l

which are exact for all polynomials of degree < d, and for which

N is a minimum are quite involved, and in fact have only been

carried out in a few special cases (101. Particularly interesting

from the viewpoints of accuracy and simplicity are formulas due

to Radon [10, § 3.12] and Albrecht-Collatz [10, § 8.2]. These

are 7 point (N=7 in (4.6)) formulas of degree 5 for the unit square

-lx, y<l. That is, they will integrate any quintic polynomial

in (x, y) exactly over this square, and further, no formula of

type (4.6) with N<7 can do this.

The Albrecht-Collatz formula is

(x, y)dxdy 4 ff(0, 0) + 1 -5(f(r, r) +

f(-r, -r))+ 8(f(s, -t) + f(-s, t) + f(t, -s) + f(-t,
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where r2 = 7/15, s2 (7+VrT)/15, t2 = (7-V24)/l5.

In Table 3 we present results from using the product Gauss-

Legendre and the Albrecht-Collatz formulas on a few double in-

tegrals. As expected, the convergence is rapid for analytic in-

tegrands, and the Albrecht-Collatz formula usually gives an

accuracy of + .05% for such integrands, although there is no

practical way to predict its accuracy ex ante. The fourth integral

exhibits quite slow convergence due to the pole at (1, 1). The

fifth integral is typical of the sort appearing in optical de-

tection theory. It represents the output of a rectangular de-

tector; the integrand is the irradiance function, Jl is the Bessel

function of first order, and c is the obscuration factor [4].
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VI. GAUSS-LAGUERRE QUADRATURE

In this final section we consider integration over the half-

line [a, -) with the respect to the weight function w(x; a) =

x e * The constraint a>-l is enforced as otherwise w(.; a) is not

integrable over [a, -).

6.1 Special Features

There are two new features in the present situation: the

infinite extent of the region of integration, and the parameter

a. As already observed in paragraph 2.4, the first feature creates

difficulties in establishing the convergence

lim G n(f; w(.; a)) = f f(x)w(x; a)dx,
n no a

but these difficulties are of a theoretical nature and, in any

event, have been resolved, as noted earlier.

The use of the free parameter a is of greater practical in-

terest. We have not explicitly encountered its analog before, al-

though one is present. Namely, the Chebyshev and Lengendre poly-

nomials, already used, are orthogonal over [-1,1] with respect to

the weight functions (l-x2) and 1, respectively. Hence they are

special cases of polynomials orthogonal over [-1, 1] with respect

2 6
to the weight function (l-x2 ) , 6>-l. Any such set of polynomials,

is called a set of ultraspherical polynomials, and in particular
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obeys a recurrence relation of the form (2.2), from which a corres-

ponding Gaussian quadrature formula could be developed as has al-

ready been done for the special cases =- and a=0. The only

practical effect of doing so is to slightly shift the corresponding

abscissas inside the interval [-l, 1]. (See [9, p. 121] for the

pertinent inequalities relating these abscissas to those of the

Chebyshev polynomials of the first and second kinds. These

abscissas are always symmetric (with respect to 0) for the ultra-

spherical polynomials.) Unless the weight function (l-x2) is

explicitly present in an integrand, there seems little point to

introducing it artificially (as emphasized earlier, the case

presents a striking exception to this advice).

A discussion of the zeros of the nth generalized Laguerre

polynomial LW occurs in [9, § 6.31]. In fact, if x(n) is then k
th(ak zero of L(a) then the following bounds are known:n

(jk/2) 2 < (n)
n + (a + 1)/2 k

2k+a+l+((2k+a+l) 2++-a
2)

(k+(a+l)/2)•

n+%(a+l)/2

where {jk } is the sequence of positive zeros of the Bessel function
SAs is also known [9, § 6.211, x~n ) is an increasing function

cc k

of a.
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(n)This last property of xk is of practical importance for

Gauss-Laguerre quadrature. For a fixed order n the location of

the abscissas can be shifted towards (or away from) the left-

hand end point by letting a decrease (resp., increase). In par-

ticular the location of the abscissas can be chosen to reasonably

coincide with the range of greatest variation of the integrand.

To illustrate this behavior of abscissas (and weights) of

Gauss-Laguerre quadrature rules, we display in Table 4 the

abscissas and weights for several different 8 point formulas.

This table shows how the abscissas drift off to the right as a

increases, and also how the corresponding integrand values are

given higher weight. The right hand column gives the theoretical

sum of the weights, computed from the formula

n
E (n;a) - x e-Xdx = r(a+l).
k=l k 0

In all cases the actual sum of weights agrees with the theoretical

sum to within 1 or 2 units in the 6th decimal place. We can see

the sum of the weights first decreasing to a minimum (actual value

= 0.885603 when a = 0.461632), and then increasing without bound.

This information follows from standard properties of the gamma

function [13, Ch. 6].
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6.2 Program and Examples

Table 4 was derived from the FORTRAN program in Exhibit 3.

This program enables a user to compute an approximation to the

integral

f(x)dx
T

the user must supply as input a value of the parameter a, the

order N of the corresponding Gauss-Laguerre formula, and the

value T of the lower endpoint. As in the program of Exhibit 2

for Gauss-Legendre quadrature, there are two subroutines: FORM

and EQRT2S (from IMSL), which together effect the computation

of the relevant weights and abscissas.

Table 5 displays a few examples of Gauss-Laguerre quadrature.

The first integrand is a nice entire function for which the choice

a = 0 leads to rapid convergence. The second integrand exhibits

slowly decaying oscillatory behavior and convergence is poor.

Probably a = 0 would be the default choice here too, although the

integrand is inherently badly behaved for quadrature. The next

integrand has a singularity at x = 0; the feature in general would

suggest a value of a < 0, and the factor x-  in the integrand in

turn leads to a = -.5 as the preferred choice. The last integrand

is (up to a constant factor) the type occuring in integration of
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Planck's equation for radiant graybody sterance. The interval of

integration [2,-) corresponds roughly to the wavelength band

(0, 7194]. Surprisingly enough here, the "natural" choice a = 3

is considerably less effective than smaller a's. The reason for

this can be deduced from Table 4; since the integrand x 3/(eX-1)

is rapidly decreasing after its peak at x m 2.8, it is advantageous

to have the abscissas clustered closer to the left end point

(= 2, in our example), and as we know, this requires smaller

values of a.
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VII. FINAL EXAMPLES AND SUMMARY

In this report we have advanced a fast and efficient method

for carrying out numerical integration by means of Gaussian

quadrature. We have stressed that Gaussian methods should only

be applied in situation where the integrand has the property of

good polynomial approximation. In the contrary cases, when either

the integrand is insufficiently differentiable or has a singular-

ity on or near the boundary of the region of integation, other

methods should be adopted. In particular, in the first case some

version of the trapazoid rule, such as Romberg integration, might

be tried (see Introduction). On the other hand, the treatment of

singularities is often a matter of ad hoc techniques, several of

which are suggested in [141.

Sometimes a simple change of variable can greatly expedite

the quadrature process. We give next two final examples, both

of which can be viewed either as integrands with singularity at

one end point of a finite interval or as integrands analytic over

an infinite interval. In the first case the change of variables

does not help at all, while in the second case the improvement is

dramatic.
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Example 1

1 1
fxl X dx f00e dX

(1-e-X-e -  ) -= (- -e-  1- = y = .577216,

where y is Euler's constant. The results of three attempts at

integration by our methods are given next.

Gauss-Chebyshev

N= 10 25 50 75 100 150 t 200

Value .579836 .577631 .577316 .577257 .577235 .577221 .577214

(time=.024 sec.)

Gauss-Legendre

N= 5 6 7 8 9 10 1 12 15

Value .577684 .577450 .577155 .577165 .577218'.5772277 .577218 .577214'.577216

(time=.055)
sec.
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Gauss-Laguerre

Nu 5 6 7 8 10 12 15 20

Value

a = -.9 .52544 .55260 .56126 .56545

-.75 .52999 .53823 - 54848 .55456 lo55855 .56249 .56635

-.5 .53134 !.53923 .54485 .54907 .55494 .55470 .56267 .56646

-.25 .52840 .55326 .56149 .56555

0. .52257 .53168 .55009 .55931 .56389

We can see from these results that conversion from the in-

terval (0,1] to [1,o) has not achieved any worthwhile results;

the Gauss-Laguerre formulas are all converging very slowly. The

Gauss-Chebyshev method has essentially converged by N = 200; the

error in the 6th decimal place is due to the inaccuracy of the

single precision arithmetic.

Example 2

(log X)ndx = (i)nf yneydy = (_i) n.
0 0

In this example we see that the change of variable converts an

intractable integral over (0,1) into a very simple integral over

[0,-) which can either be evaluated in closed form (using integra-
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tion by parts), or integrated very quickly and accurately by the

Gauss-Laguerre method (using either a=O or a=n). By contrast,

observe the result of attacking the logarithmic integral directly

in the case n=4.

Gauss-Chebyshev

N= 10 25 50 100 150 {200 300 500

Value 23.6216 24.4664 !24.3403 24.1803 24.1153 24.0819 !24.0490 24.0245

(time=.039)
I sec.' i II

Gauss-Legendre

N= 10 15 20 25 30 40 50 75 90
- I

Value 17.4324 19.7869 21.0005121.7232 122.1952 22.7634123.0857 23.4809 23.6001

(time=7.45)

In conclusion, if asked to recommend a single all-purpose integra-

tion routine, our choice would have to be the Gauss-Chebyshev for-

mula (even for infinite intervals, by truncation). Its simplicity

and the speed with which its order can be increased are the de-

cisive factors.
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